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Abstract 
Accurate estimation of state-of-charge (SOC) of a battery through its life remains challenging 
in battery research. Although improved precisions continue to be reported at times, almost all 
are based on regression methods empirically, while accuracy is often not properly addressed. 
Here, a comprehensive review is set to address such issues, from fundamental principles that 
are supposed to define SOC to methodologies to estimate SOC for practical use. It covers 
topics from calibration, regression (including modeling methods) to validation in terms of 
precision and accuracy. At the end, we intend to answer the following questions: 1) can SOC 
estimation be self-adaptive without bias? 2) Why Ah-counting is a necessity in almost all 
battery-model-assisted regression methods? 3) How to establish a consistent framework of 
coupling in multi-physics battery models? 4) To assess the accuracy in the SOC estimation, 
statistical methods should be employed to analyze factors that contribute to the uncertainty. 
We hope, through this proper discussion of the principles, accurate SOC estimation can be 
widely achieved. 
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1 INTRODUCTION  

The estimation of state-of-charge (SOC) of a battery is probably one of the most challenging 
topics in the battery research. SOC is the most critical state parameter, playing fundamental 
role in defining other state functions for proper functionality of the battery, viz. performance, 
reliability, and safety. To determine SOC reliably, precisely, and accurately is thus crucial. 
To date, SOC is still determined by empirical methods by capacity measurements, whereas its 
accuracy can hardly be validated in practical use, leaving reliability and safety issues of a 
battery too difficult to handle. Here, we intend to explain the fundamental principles in 
defining SOC and reveal the issues with SOC determination by empirical methods. Further 
discussions on attributes that contribute to uncertainty and difficulty in measurements, 
analytical derivations to correlate measurable parameters to SOC, regressions, and 
predictions constitute the entire review. We believe this is the first comprehensive review on 
this subject for the lithium-ion battery (LIB) that is quite overdue. We hope the discussions 
will help the practitioners in this field receive a better understanding of the meaning of SOC 
in different perspectives and the technical difficulties that they might encounter in the current 
practice. We also hope, by clarifying the ambiguity in defining and determining SOC in 
various methods, a more reliable and accurate SOC estimation can be achieved. 

Earlier papers coining the term ‘state of charge’ date back to 1960s [1–3]. Yet, after more 
than half a century of continuous efforts, we are still debating the definition of SOC and 
struggling with finding a better way to determine SOC, as summarized in various recent 
reviews [4–10]. 

With progress made in electrification of vehicles (e.g. various types of electric vehicles or 
xEVs) and grid energy storage systems, where large battery packs and banks with more than 
hundreds or thousands of batteries are being used, SOC estimation is even more critical, 
demanding and challenging. In these scenarios, battery systems rely heavily on reliable, 
precise, accurate SOC estimation to coordinate devices in the system in order to operate 
safely through seamless control and management of power inputs and outputs. Any weak link 
could easily cripple or even fail the entire system. 

The SOC, different from other descriptors such as current and voltage that can be measured 
on board directly in most situations, is a subtle descriptor for a battery system since it is not 
easily and directly measurable. A number of reasons attribute to this difficulty, originating 
from both thermodynamics and kinetics (more details shall be discussed in Section 3). In 
essence, a true SOC should be the one defined by principles governed by thermodynamic 
equilibrium; yet, in reality, what we want in practical applications is a simple descriptor that 
tells the availability of usable energy and capacity in the system that can be deployed to 
conduct work under polarization, in which SOC is expected to be a function of numerous 
factors governed by the kinetic regimes with all sorts of electrochemical, mechanical and 
thermal fields and gradients. Worst off, these factors are often coupled, creating complicated 
transmuting results that make the empirical methods that rely on correlations ambiguous and 
difficult to be defined for the SOC determination.  

To facilitate further discussions on this subject, we shall call the SOC that is governed by the 
thermodynamic equilibrium the “true SOC” or “t-SOC,” whereas the SOC that is determined 



empirically through engineering methodologies to service the purposes for any functions in a 
battery system “empirical SOC” or “e-SOC.” In most places, such distinctions might not be 
necessary, and we shall just use generic “SOC” to express the concept that is widely used in 
the literature to date.  

It is also worth noting that, in the literature, most of researchers studying on this subject often 
emphasize precision (in respect to e-SOC), much less on accuracy (especially with regard to 
t-SOC), as to how to perform a better e-SOC estimation. Such an e-SOC estimation is mainly 
accomplished by counting the electrical charges in and out of the batteries (i.e. the capacity in 
coulombs or Ah) in a typical coulomb-counting (or Ah-counting) technique as expressed by 
Eq. (1): 

SOC 𝑡 = SOC! −
𝜂𝑖𝑑𝜏!

!
𝑄!"#$%

 
(1) 

where SOC0 represents the initial SOC; Qrated the rated capacity under a certain specification 
by the manufacturer; η the coulombic efficiency; i the current at any instance of time, which 
is by convention negative at charge and positive at discharge. One should pay attention to the 
distinction between precision and accuracy with regard to SOC estimation. There are many 
genuine approaches reported in the literature today that could precisely determine e-SOCs to 
serve the engineering needs, but often these e-SOCs so-determined were not validated with 
“t-SOCs” to determine their accuracy. This aspect is particularly important but difficult and 
vulnerable when the battery ages and capacity fades. Such disparities could cause serious 
concerns in reliability, durability and safety issues in practical applications.  
Although it may be ostensibly easy and likely accountable to find electrical energy balance 
(in term of charge and voltage) quickly in a battery system, the reality behind the balance of 
energy is much more complicated than the electrical one alone. Such an energy balance 
should include chemical (e.g. via mass transfer and reaction), thermal (e.g. via heat 
generation, retention, flow, and exchange with the environment), and mechanical ones (e.g. 
via volume changes and micromechanical forces-induced stress and strain changes); and, 
each and every may in turn affect the result of the electrical energy balance over a significant 
range of spatial and temporal scales. The complicated situation constitutes the very reason 
why it is so difficult to determine SOC reliably, precisely, and accurately. 

Disregarding the complexity in the energy balance in the determination of battery state 
functions, the Ah-counting method to obtain SOC remains a practical solution used by the 
majority in the battery technology industry [10]. The problems of the Ah-counting method 
include: (1) uncertainty and inherent errors in the determination of the initial SOC0, (2) the 
accumulative errors over a long period of time due to the imprecision introduced by the time 
counters and current measuring transducers, as well as coulombic efficiency; (3) the use of 
rated capacity Qrated as the denominator in the SOC calculation, since Qrated is determined 
more or less arbitrarily by test protocol and procedure used by the cell manufacturers or 
device OEMs, and (4) systematic errors introduced by the tests. To overcome these problems, 
there are several solutions that have been suggested in the past to improve precision in the 
measurements, to validate the results against other assessments of information for the sake of 
the accuracy, to correct possible sources of errors, and to reduce the impacts of the errors on 



the method of SOC estimation. For instance, in principle the SOC should have a certain 
unique correlation with other measureable state parameters, such as the open-circuit voltage 
(OCV or VOC) or the electrochemical impedance in a specific frequency range [4,5]. These 
correlations can be pre-determined in the labs and made into look-up tables to pinpoint or 
calibrate the SOC values. To improve precision, one should strive to diminish any deviations 
from the current integration and technique, via better hardware platforms and instruments or 
intelligent software-based regression methods, most of which are battery-model-assisted data 
deduction [5].  

Using suitable battery models and regression techniques has been touted as a powerful 
approach to achieve viable results. Therefore, a significant level of efforts has been engaged 
in the past targeting on building accurate models. These efforts include those using various 
types of multi-physics framework to couple principal system properties, such as those 
governed by electrochemical and thermal processes; utilizing simplified mechanism 
descriptions, dimensional reduction, and efficient parameter identification; and, engaging 
sufficient validation of model precision and accuracy. A typical exercise in most regression 
methods from modern control theory, including those using least square [11–14], filters [15–
20], estimators [8], artificial neural networks [21–26], genetic algorithms [27,28], and so on, 
demonstrates improved precision. However, by and large, without any adequate validation 
with SOC values determined separately from reliable techniques, such as OCVs measured 
after equilibrium, the accuracy remains undetermined. This is an important aspect that future 
work should strive to pay attention to and address properly. 

Even if a battery model were precise and accurate enough to describe specific features of a 
single cell of a specific geometry and size, to enable such a model applicable to cells of 
different geometries and sizes is not trivial. This is conceivable based on the implications of 
the energy balance issues, as explained earlier. These issues depend on spatial and temporal 
factors that interact incongruously. It is therefore not straightforward to scale up parameters 
in the model with extended physical dimensions or time. Likewise, to apply the same model 
to simulate behavior of a battery pack, additional issues such as cell-to-cell variations may 
still get in the way to affect precision or accuracy of the prediction or estimation. This issue 
has made the SOC estimation a statistical practice beyond the conventional wisdom to 
believe that the SOC could be definitively determined with sufficient precision and accuracy 
in reality. It is important to point out here that the t-SOC as governed by the thermodynamic 
equilibrium is supposed irrelevant to temporal and spatial variations, whereas the e-SOC in 
the kinetic regime could be sensitively affected by such variations.  

Here, we shall begin with the explanations of fundamental concept and underlying principles 
that govern battery state functions and review SOC-related subjects with relevant discussions 
on issues encountered. Although in early work on the SOC estimation of Ni-Cd batteries [3], 
using OCV, terminal cell voltage, and impedance at certain frequencies has been mentioned 
as possible SOC estimation methods, how to apply these methods in lithium-ion batteries, for 
example, might not be as trivial as that has been suggested. Therefore, in this work, we shall 
survey the landscape of relevant SOC issues and provide a forum for unified discussions on 
the subjects. The hierarchy of discussions on the topics shall follow a logic tree, as outlined in 
Figure 1. 



 

 

 

[Figure 1] 

2 HOW TO DEFINE SOC 

To fully capture the essence of state functions, such as SOC, we shall start from the basic 
understanding of SOC from materials level to the system. Without such an understanding, it 
is hard to establish the basis for SOC estimation through model simulations, approximations, 
calculations and validations. 

2.1 Definition from thermodynamics 

2.1.1 SOC in an electrode 

The SOC is a state function of a battery system. To abide by the laws of thermodynamics, the 
state of a chemical system is defined only when, at constant temperature and pressure, the 
species in the system are in equilibrium. At such a condition, the composition of the active 
material of an electrode is unique, and so is the concentration of the electrochemically active 
species in that composition. Accordingly, the Gibbs free energy of formation associated with 
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this composition is thus defined. In other words, the electrode potential of this composition is 
unique against a reference potential. For a lithium-ion battery, it implies that the lithium 
content in the electrode, say x in LixMyOz, is fixed at such a condition. The potential of this 
composition, according to the Gibbs free energy of formation, is constant versus a reference 
electrode such as a Li metal (often expressed as Li/Li+): 

𝐸 =  −
∆𝐺 Li!M!O!

𝑛𝐹  

=  a unique, characteristic potential (versus Li/Li!), 

(2) 

where n is the number of electrons involved in the charge transfer per unit formula, and F the 
Faraday constant. This expression is consistent with one expected from the Nernst equation: 

𝐸 =  −
𝑅𝑇𝑙𝑛 𝑎!"

𝑛𝐹  =  a unique, characteristic potential (versus Li/Li!), 
(3) 

in which the activity of Li, aLi, is fixed. In this case, SOC is defined as, 
𝑆𝑂𝐶 = 𝑓(𝑐!), (4) 

here cs is the lithium content in the active material (i.e. x in LixMyOz) with a specific value in 
correspondence with aLi.  

2.1.2 SOC in a single cell 

A lithium-ion cell comprises two electrodes, the positive (cathode in a galvanic cell) and the 
negative (anode). The cell voltage reflects the difference in the potentials of the two. When 
the two electrodes are in equilibrium, each stays at specific potential and lithium content in 
the crystal structure, say 𝑐!! and 𝑐!!, respectively. Here, the SOC could be expressed by a 
concentration vector, 𝑐! = 𝑐!! , 𝑐!! . However, two scenarios spoil the feasibility of using the 
concentration vector to define the SOC for a cell: (1) the lithium content in solids or the 
electrolyte can hardly be measured directly in experiments or in a real cell <1>; and (2) a 
simple numerical indicator is more desirable than a vector with two concentration values. 
Therefore, it is easier to turn to the classical framework using OCV [29–31], a single-valued 
parameter that can be measured at equilibrium, which expresses the difference in lithium-ion 
concentrations in the electrodes. The correlation between the OCV and concentrations can be 
simplified as follows: 

OCV = 𝑓! 𝑐!! , 𝑐!! − 𝑓! 𝑐!! , 𝑐!! , (5) 

where 𝑓! and 𝑓! refer to the OCV vs. SOC curves of the positive and negative electrode, 
respectively, as a function of lithium-ion concentration in each electrode. Here, 𝑐!! and 𝑐!! 
are the lithium-ion concentrations in the electrolyte phase adjacent to the cathode and anode, 
respectively. At equilibrium, the lithium-ion concentration in the electrolyte is uniform in the 
                                                
<1> A neutron radiography or neutron imaging method using neutron sources with specific energy 
has been suggested for in situ and real-time detection of the total concentration of Li ions in certain 
volume, whereas a similar method named neutron depth profiling may also have a high resolution in 
the vertical direction (depth) of the volume, thus can accurately locate the ion concentration at a 
position in the three-dimensional volume. 



cell, i.e. 𝑐!! = 𝑐!!. Therefore, the lithium-ion concentration in the electrolyte is irrelevant to 
the SOC at each electrode. Hence, the OCV is exclusively determined by 𝑐!! and 𝑐!!, as one 
would expect from the Nernst equation, 

𝑂𝐶𝑉 = 𝑓!"## 𝑐!! , 𝑐!! = 𝑓!"##(𝑐!) (6) 

If the inverse function exists for Eq. (6), 
𝑐! = 𝑓!"##!! 𝑂𝐶𝑉 , (7) 

one can use the OCV to infer the SOC of the cell. Therefore, if and only if the correlation 
between SOC and OCV is one-to-one, as the electrochemical equilibrium governs, we can 
use the OCV to infer the SOC of the cell as follows: 

𝑆𝑂𝐶 = 𝑓!"##!! 𝑂𝐶𝑉 , (8) 

In general, the OCV vs. SOC curve can be determined by techniques such as galvanostatic 
intermittent titration technique (GITT) [32]. For convenience, an approximation of this curve 
with sufficient precision can be constructed by averaging the C/25 charge and discharge 
curves, as suggested in Refs. [29–31]. 

2.2 Definitions from engineering perspective 

2.2.1 Engineering approaches 

The definition of SOC from thermodynamic perspective presents a fundamental framework 
to depict the processes that determine the state of a battery cell. Nonetheless, applying this 
basic concept in real applications is practically infeasible. An expedient approach is needed to 
serve engineering purposes, such as estimating remaining capacity in a cell or battery system. 
Taking the powertrain as an example, there is a preset operating window that delineates the 
operation regime for the battery system. Battery performance needs to satisfy such power and 
energy demands to fulfill the functionality as an “engine” in the powertrain. Battery 
performance characteristics need to be defined as a function of battery’s SOC. This state 
function needs to be tracked during an operation (often in so-called “duty schedule” or “duty 
cycle”) to monitor the conditions of the battery system and to project its ability and capability 
to perform certain functions in a mission. This requirement is very different from the SOC 
defined at equilibrium. In other words, what is useful and critical in practical applications is 
the projection of a battery’s transient capability in a duty cycle to a descriptor that can be 
easily accessible. The definition of SOC in such an engineering practice is thus different from 
the one defined in thermodynamic conditions. One of the most widely accepted conventions 
is the one given in the USABC Battery Test Procedure Manual [33] as follows: 

𝑆𝑂𝐶 =
𝑄!"#
𝑄!"#$%

×100%, (9) 

where Qres represents the remaining capacity in a battery under a given testing condition, and 
Qrated the rated capacity under the same specific condition. In principle, both Qrated and Qres 
should be quantifiable, if Ah counting has sufficient precision and accuracy in a duty cycle.  
The most troubling issue with this convention is the challenge in quantifying Qres and Qrated 
precisely and accurately in practical applications, especially as the battery or the system ages. 
On one hand, to project Qres accurately in a duty cycle is intrinsically challenging, because a 



truthful Qres projection is difficult due to the fact that its variations are “load-specific” in the 
cycle. On the other hand, Qrated is a quantity determined from laboratory testing for a specific 
cell design. Due to cell variability, Qrated is not truly constant from cell to cell in reality. Its 
accuracy depends on various attributes, including cell-to-cell variation from manufacturing 
quality, precision of the test equipment, errors created from test protocols and conditions, and 
quality control of the testing environment. Furthermore, since the operating conditions in real 
world are more complex than those used in the test procedure, the validity of using Qrated for 
SOC estimation as suggested by Eq. (9) is thus becoming questionable, not to mention the 
implications from cell-to-cell variations and aging-induced issues. 

To mitigate these difficulties, a few suggestions for improvements have been proposed 
recently to modify the basis for SOC calculation. For instance, a more accommodating and 
responsive method that can accommodate possible capacity variations has been proposed 
[29–31]. In this method, the basis for the SOC calculation is the “maximum capacity” (Qmax), 
as determined in the test at a very low rate (such as C/25 or a rate beyond which the capacity 
does not increase noticeably anymore with rate) for a cell, as follows: 

𝑆𝑂𝐶 =
𝑄!"#
𝑄!"#

×100%, (10) 

Accordingly, the Qmax refers to the optimal capacity that an individual cell is supposed to 
deliver under minimal kinetic effects, and it should be close to the thermodynamic limit. In 
this practice, the SOC so calculated would be very close to that determined by GITT or other 
reliable means for calibration and validation to retain precision and accuracy [29]. 

2.2.2 Practices in engineering definitions  

Using engineering approaches to define SOC such as in Eq. (9) and (10) it mostly relies on 
capacity calculation, inevitably introducing kinetic features into these methods. To determine 
SOC for engineering purposes, the following practices should be observed: 
(1) From the user’s perspective: Battery SOC is defined as 0% when the users can no longer 

extract any capacity (disregarding possible energy recovery after a short rest). Meanwhile, 
the SOC is defined as 100% when the battery is fully recharged (e.g. usually using a 
charging process with a two-stage constant-current, constant-voltage (CC-CV) profile to 
realize a more efficient charging). The SOC definition with this principle shall ensure that 
the user observes a full SOC range on the dashboard and have a better user experience. 

(2) To estimate SOC or validate SOC estimation, the factors impacting the kinetics should all 
be predetermined and followed in the entire estimation process, including temperature 
and current (or rate) variations. 

(3) If using the Ah-counting method (see Eq. (1)), the coulombic efficiency and the Qrated at 
the denominator should both be calibrated under the predetermined kinetic factors in the 
above practice. 

(4) If a battery model is assisting the estimation method, the parameters of the model, such as 
the OCV-SOC curve and the circuit elements of the battery in the equivalent circuit 
model (ECM); should also be calibrated along with the predetermined kinetic factors. For 
instance, the studies on entropy coefficient of a battery cell showed that the OCV-SOC 
curve is rather insensitive to temperature [34]. The sensitivity of the parameters to the 



accuracy of the model prediction should be well characterized and understood. 
The kinetic characteristics that associate with e-SOC is the origin of many complex issues of 
SOC estimation: they contribute largely to the errors of Ah-counting method and also bring 
so much trouble to the task of yielding accurate parameterization of battery models. On the 
contrary, proper understanding and handling of these kinetic features should make it possible 
to trace the SOC fluctuations by tracking important external variables. Otherwise, to estimate 
SOC using thermodynamic definition as depicted in Section 2.1 is impractical. This tracing 
technique is traditionally accomplished by the Ah-counting method. Therefore, to gain better 
insight how to accomplish and perfect this tracing technique we should dissect its drawbacks 
in order to provide better solutions. This aspect will be analyzed in detail in Section 3. 

3 METHODOLOGIES FOR SOC DETERMINATION 

The Ah-counting method is the most commonly used approach for SOC determination in 
practical applications. The principle of this method is rather straightforward: by knowing 
Qrated and the capacity that has been dispensed, one can estimate the maximum capacity 
remains in the battery, as delineated in Eq. (1). Since both current and time can be measured 
conveniently, this simple method provides the most practical tool for tracking the changes in 
SOC. However, this method is prone to errors: the error related to initial SOC determination; 
the accumulative errors from sensing instrumentation during the measurement of current and 
time; the variations in actual Qrated introduced by cell variability and capacity fade; and the 
uncertainty in coulombic efficiency over aging. To alleviate the uncertainties induced from 
these errors, a number of improvements and approaches have been suggested to date.  

3.1 Calibration methods 

To minimize the SOC inaccuracy by the Ah-counting method, a logical solution is to perform 
calibration, a procedure often carried out by correlating the SOC with variables, such as OCV, 
impedance at certain frequencies, or surface stress when the battery is compressed by rigid 
plates with a constant pressure on both sides of the cell, to name a few. 

3.1.1 The correlation between SOC and OCV 

Attempts to correlate SOC with OCV could date back to 1960s by the work of Latner [3]. As 
explained in Section 2.1.1, this relationship of SOC and OCV is definitive as suggested by 
the thermodynamic principle when equilibrium is achieved. However, in reality some 
difficulties remain as barriers to yield this relationship accurately, if the governing principles 
could not be or were not properly observed in the experiments and analyses. Here, a few 
examples shall illustrate such aspects. 

3.1.1.1 From active material aspects 
Encountering of voltage plateaus – For some active materials such as lithium iron phosphate 
(LFP) the OCV vs. SOC curve exhibits a flat voltage plateau over the useful SOC range, and 
when coupled with a negative electrode such as graphite, a few voltage plateaus still exist in 
certain SOC ranges. The experimental results from a common LFP battery showed that the 
battery OCV may only vary <5 mV over a span of 15% SOC [35]. In this respect, using OCV 



to calibrate the SOC value needs high precision voltage measurements, most likely infeasible 
in practical applications with low-cost transducers.  

3.1.1.2 Rest interval for equilibration 
It is prerequisite that only the OCV measured at equilibrium defines t-SOC, which could then 
be used to calibrate the e-SOC estimated by an engineering approach. Thus, to allow the cell 
to rest in order to determine its stable OCV over a sufficient (but non-excessive) period of 
time is essential. However, a legitimate rest period is also hard to determine, since it depends 
on the conditions before and during the rest. In other words, the type and magnitude of the 
perturbation introduced to the system prior to the rest could be a dominant factor in setting 
the duration to equilibrate. Such information is often unattended in practical applications to 
guide an accurate SOC determination. Inaccuracy incurred while the OCV is still in transient 
affects the fidelity of the calibration. Analogously, if the rest is excessive, self-discharge may 
occur and undermine the accuracy as well. In principle, the rest duration could be affected by 
temperature, SOC and the type and extent of prior perturbation. A reasonable rest interval is 
typically in the range of an hour to several days [36–40]. In a well-controlled experimental 
environment, using a protocol to decipher voltage variations within a preset precision limit 
and a reasonable time step in the data acquisition routine, say <2σ of a transducer’s resolution 
within 20 min of an interval, might give a satisfactory result. 

3.1.1.3 Temperature dependence 
In general, the OCV vs. SOC curves over a limited temperature range are very similar within 
the operating conditions (e.g. from –20°C to 60°C), but they are still temperature-dependent, 
as expected from the entropy contribution; thus, such a dependence as expressed in dVOC/dT 
is largely the entropy changes in the battery system, depicted by the entropy coefficient, 
dΔS/dT, which can be derived from the following:  

 dVOC/dT = –1/nF(dΔG/dT) = –1/nF(dΔH/dT) + T/nF(dΔS/dT) (11) 

Since dΔH/dT is usually negligible, dVOC/dT is thus primarily attributed to dΔS/dT. 
Experimental results showed that the value of the entropy coefficient is dependent on the 
SOC (in reference to a specific composition of the active material) and temperature range, but 
generally it is small. For example, a temperature change of 10°C may introduce a variation in 
OCV on the order of 3 mV for a cell using layered LixNi1/3Mn1/3Co1/3O2 and LixMn2O4 spinel 
blended cathode, as reported in Ref. [34]. 

3.1.1.4 Hysteresis induced by phase transition 
The impact of hysteresis has also been reported in the past [36,41–48], which could affect the 
intricate correlation between OCV and SOC. Here, the hysteresis means that the electrode 
potential exhibits a disparity, which is path-dependent during a charge-discharge cycle, at the 
same composition. Sometimes the potential differences could reach as large as tens of mV, 
making the reproducibility of OCV uncertain for the SOC calibration. Some experimental 
results depicting the characteristics along with possible mechanistic models to explain the 
hysteresis phenomena are summarized in Table 1 and Table 2. 

Even though the hysteresis is a concern, especially for materials that have extended voltage 
plateaus as in LixFePO4-based systems, so far the magnitude of the impact on the calibration 



remains small and does not cause much concern in the SOC estimation.  

3.1.2 The correlation between SOC and impedance 

Besides using OCV to calibrate SOC, the impedance of battery has been suggested for such 
an application. In principle, using impedance to calibrate SOC is very challenging mostly due 
to the complexity of resolving various impedance attributes and allocating their contributions 
to the spectrum obtained by electrochemical impedance spectroscopy (EIS). It is important to 
point out that the equivalent circuit diagram (ECD) used in the data analysis fitting usually 
does not explicitly display a one-to-one mechanistic correspondence to the physical processes 
in the actual battery reactions. For example, a typical ECD does not separate attributes from 
positive and negative electrodes. Nor does it explicitly separate attributes in a process such as 
charge transfer, in which different mechanisms of mass transport (e.g. lithium ion transport in 
the liquid pore channels of the electrode and in the solid grains) could affect the kinetics of 
the charge transfer at the electrode-electrolyte interface. Therefore, the fitting in the EIS data 
analysis with an ECD could remain ambiguous with respect to mechanistic understanding of 
the kinetic effects on SOC projection, and this uncertainty casts a very challenging task for 
the calibration. Using impedance to calibrate the SOC has been proposed in the literature 
[4,5], and its drawbacks are listed in Table 3. 

3.1.3 The correlation between SOC and mechanical stress  

Using mechanical stress exhibited on the battery surface for SOC calibration is another 
concept reported recently [49]. The experimental data for the correlation between SOC and 
mechanical stress is usually obtained by measurements with a setup in which the battery is 
compressed by two rigid plates clamped onto two parallel sides of its containment. A 
pressure transducer is affixed on one of the surfaces. The principle of this approach is based 
on an assumption that the thickness or volume change of a battery in the free state is in 
proportion to the surface stress under a compressed state <2>: when the SOC changes, the 
battery’s dilation and contraction shall be reflected in the changes in thickness of the 
electrodes, inducing the variations of the surface pressure (force on the rigid plates). The 
correlation between the surface pressure and SOC is assumed independent of the temperature 
and current rate [49]. However, in our opinion, the methods of employing mechanical stress 
for SOC calibration need further improvements of the techniques and better understandings 

                                                
<2> The measurement of stress evolution is seemingly more convenient than that of thickness or 
volume change. The thickness measurements of cells in a free state often require a strain or 
displacement transducer, e.g. a strain gauge (such as digital micrometer or linear variable differential 
transformer, LVDT), or imaging equipment (e.g. high-resolution optical/laser microscope or X-ray 
based techniques such as computerized axial tomography (or CT scan). The volume change is often 
measured by means of three-dimensional imaging devices or methods based on Archimedes' principle. 
Most of these measurements require support of special tools or devices. In each method, there are 
precision issues with instrumentation and the process, influences by external factors such as surface 
roughness, uniformity, mechanical distortion (bending, twisting, etc.), or uncertainty and error caused 
by shape, dimensional scale or aspect ratio changes in the cell that are not reversible. 



of the underlying mechanism in order to assure their validity. At the present time, the number 
of publications with evidence that could support corroborative arguments is few. Nonetheless, 
this approach offers potential for online monitoring and room for improvements, if some key 
issues listed in Table 4 could be resolved. 

3.1.4 Effect of aging and degradation 

Battery aging and degradation add another layer of complexity in the calibration: since all 
aforementioned factors such as OCV, impedance, and mechanical stress are all affected by 
aging and degradation, as often reflected in the SOH of the battery. When a cell went through 
a series of aging and cycling conditions, the correlations of these factors with SOC all require 
re-calibration. For instance, the VOC = f(SOC) curve of a cell could be affected by aging and 
degradation, whereas the complicated SOH estimation is another challenge that also depends 
on aging conditions which is scarcely discussed in the literature so far. However, recent work 
[30,31,50,51] indicated that such complicated relationship could be analyzed, quantified, and 
projected to derive the variations in the VOC = f(SOC) curve as a function of aging condition. 
An incremental capacity (dQ/dV) analysis and a mechanistic model were used to incorporate 
degradation modes that account for either thermodynamic attributes such as active materials 
loss in the electrolyte and electrodes or kinetic attributes such as impedance changes into the 
assessment of impacts from aging on OCV-SOC relationship and SOC estimation.  

3.2 Regression methods 

The application of calibration methods to ensure the validity of SOC estimation is limited in 
practice mainly because all these correlations based on OCV, impedance, or stress with SOC 
require an equilibrium condition to warrant reliable readings from the measurements, which 
can only be guaranteed when the battery has had a sufficient rest. 

To enable practical applications, other possible solutions have been actively pursued by many 
researchers. Some have suggested including the use of high-precision sensors or transducers 
(although sharp increases in costs [10] could be a concern) and more in-depth investigations 
into the factors that impact Qrated (the denominator in Eq. (1)). In the literature, it is generally 
accepted that, to determine Qrated under a predetermined cut-off voltage accurately, important 
factors should include ambient temperature, SOH (or often represented by cell resistance) and 
current (or rate) [50,51]. From the perspective of energy conservation, these factors should 
include all that affect the energy balance and efficiency in the battery system, including those 
leading to losses due to thermal (heat dissipation) or mechanical (hysteresis) origins. 

In practical applications, costs of high-precision sensors or transducers and complicated setup 
to afford conditions to achieve accurate Qrated measurements could become prohibitive for 
implementation. Thus, alternative solutions are desired. Most of the recent efforts consider 
regression techniques the most feasible.  

The most accepted regression methods are Kalman filter (KF)-based and its derivatives. The 
KF method is a recursive process in which each step reallocates a trust weight of two sources 
of outcomes as recursive inputs until a finite solution is reached within a set of criteria [15–
20]. One source is the SOC value estimated from the Ah-counting method, and the other 



estimated from a state-space model. For batteries, the state-space model is formulated often 
using differential equations describing the relations between SOC and other measurable 
variables, including at least terminal voltage, OCV, and current. The weight in each recursive 
step is set by reliability criteria of the state-space model represented by an intermediate 
parameter known as ‘innovation,’ which is the difference between the one (e.g. the terminal 
voltage in most examples) estimated by the state-space model and the measured value. If this 
innovation is sufficiently small, the joint estimated result should basically equal to the one 
sourced from the Ah-counting. Otherwise, the result from Ah-counting would be corrected by 
adding a supplementary item obtained by multiplying the innovation with the Kalman gain 
(KG) to take into account the source from the state-space model. 

The basics illustrated by the KF-based methods help to summarize the building blocks in 
most of the regression methods, which include:  

• A battery model, i.e. the state-space model, to describe the correlation between SOC and 
measurable variables in the system. 

• An algorithm, which is used to reasonably incorporate different sources or to distinguish 
the key indexes among all sources. 

An accurate battery state-space model is theoretically difficult to establish. Although in the 
literature a handful of relevant efforts have been reported on how to construct this model 
more accurate, the true characteristics of a reliable model for accurate SOC estimation are 
still not fully identified. For example, ‘multi-physics’ models are frequently used by many 
that are interested in this subject. These models rely on accurate parameterization to make the 
model reliable. However, the strong coupling among key parameters remains as a challenging 
task for the modelers attempting to increase the models’ fidelity with reality. In Section 4, we 
shall go into details about modeling and its relevant issues.  

Discussions on algorithm-related issues are the most abundant in the literature that comes 
with a long history of study. In Section 3.3, we shall review the evolution in the research on 
algorithms used for SOC estimation. 

Finally, for most of the regression methods, the Ah-counting process is always part of the 
process in the regression. In Section 3.4.2, we shall touch the basis on why Ah-counting is 
present in most of the SOC estimation methods. Is it feasible to fulfill the goals of the SOC 
estimation with sufficient precision only from the state-space models? Clarifying this issue 
may provide a basis for developing a better SOC estimation. 

3.3 Regression algorithms 

3.3.1 Algorithm is popular 

According to published papers from the beginning of 2014 to March 2015, we conducted an 
analysis on the sub-topics of a distribution of SOC-related publications. The literature search 
retrieved 53 papers <3>, which were narrowed down to 50 manually after removing three that 

                                                
<3> Search using title:(batter*) AND (“state of charge” OR “capacity estimation” OR “SOC”) on 
Web of Science core journals resulted in a collection of SOC-related publications with sub-topics 



are of little relevance. Among them 23 papers are related to the improvement of algorithms, 
whereas battery model-related papers are seven (excluding OCV models). In recent years, the 
algorithmic studies have occupied half of the SOC-related research activities, and special 
attention has been paid to improve accuracy of SOC estimation by algorithm improvements. 
The trend indicates that the interests on SOC-related research are shifting from those on 
materials and electrochemistry to those on system control, diagnoses, data mining and 
analyses using applied mathematics.  

3.3.2 Algorithm evolution 

Lots of different algorithms can be used to assist the regression of SOC, such as least square 
(LS) (e.g. [11–14]), Kalman filter (KF), extended KF (EKF) (e.g. [15–17]), sigma point KF 
(SPKF) (e.g. [83]), unscented KF (UKF) (e.g. [18,87]), particle filter (PF) (e.g. [92]), sliding 
mode observer (e.g. [72]), proportional-integral observer (e.g. [95]), Luenberger observer (e.g. 
[96]), and genetic or neutral network algorithms (e.g. [13,23–28,82]). The improvements of 
algorithms are mainly reflected in the following aspects: 

(1) The common ECMs are capable of describing first or second order characteristics in a 
linear battery system. To deal with more complicated electrochemical processes in 
batteries, models with higher [97–99] or fractional orders [72,100,101] would be desired 
in the regression. To satisfy this need, the compatibility of algorithms for high-order 
linear systems becomes more critical, since it allows the regression to use more complex 
models to yield higher precision. 

 (2) The algorithms become more adaptive for nonlinear systems, from earlier ones capable 
of handling linear systems to those able to handle linearized systems, strongly nonlinear 
continuous systems and systems merely calculable at each single point. Most practical 
systems often come with some extent of nonlinearity.  

 (3) The algorithms become more capable of handling noisy matrices that exhibit certain 
types of randomness, from earlier ones that require zero-sum and zero-mean Gaussian 
noise to recent ones that can deal with noisy matrices with quantitative expressions of 
randomness. In general, in measurement systems certain types of noise are inevitable and 
ubiquitous. The randomness in the distribution of noise (i.e. system errors) should be 
verified “white” and non-biased in a well-calibrated system. However, the noise from 
environmental interference (random error) may exhibit a characteristic distribution that is 
“not white” (biased). Improving the tolerance to biased noise is an important tactic for 
better accuracy in the regression.  

In addition, the most difficult task of reviewing algorithms is to tell exactly which algorithm 
is the most accurate and make a definitive recommendation. This kind of conclusion is 
strongly case-sensitive: it involves almost every element in the estimation process, including 
the precision of battery model parameters, battery operating conditions, and especially the 

                                                                                                                                                  
from reviews [6,8,9], combination of the estimations of SOF and SOH [52–56], resistance or 
impedance-based calibration [57–60], mechanical stress-based calibration [49], pack SOC 
[19,29,61,62], OCV-based model [63–65], electrochemical models [66–72], to algorithm 
improvements [73–95].  



detailed construction of each algorithm. 

3.4 Dependency on data acquisition and Ah-counting 

3.4.1 Can SOC estimation method be self-adaptive? 

A self-adaptive method is appealing for SOC estimation since battery performance is strongly 
time-dependent along its aging process. In pursuing such a capability, adaptability is 
unfortunately limited by the nature of the characteristics of the battery system, e.g. the VOC = 
f(SOC) relationship; and the fidelity of its model in expressing such a relationship. First of all, 
the characteristics of a battery system, such as VOC = f(SOC), must be characterized precisely 
and accurately. Thus, the quality of the data in representing such a relationship must be high. 
This is true for both e-SOC and t-SOC. 

Because limited resources on a practical platform, SOC estimation is often performed by a 
preset process and database. The pre-assigned data used in the SOC estimation could be 
divided into two types: those that can be derived in real time, on line during normal operation 
of the battery and those that can only be obtained in laboratory (referred to as ‘lab data’ 
hereinafter). If all the preset data needed for successful execution of SOC estimation are the 
first type, this method could be completely self-adaptive. Therefore, to understand if a 
method can afford an adaptive SOC estimation is to analyze the necessities of lab data. 
Taking a typical KF method for example, the preset data needed in the estimation process are 
model parameters such as resistance and capacitance values in the ECM and VOC = f(SOC) 
curve. Due to the influence of temperature or SOH, these preset data could vary during 
battery operation; thus, from time to time they need to be recalibrated after a certain period.  

A few comments are worth noting here: 

(1) On battery model parameters (and taking ECM for example): resistance and capacitance 
values in the ECM can be determined by various types of tests such as constant current or 
dynamic discharging and charging, which implies that identification of ECM parameters 
can be accomplished without disturbing the normal operation of battery. Therefore, this 
type of parameters can be adjusted online to improve the accuracy of estimation method 
over a long duration (hence these parameters could be adaptive). 

(2) On the VOC = f(SOC) and the reciprocal SOC = f–1(VOC) curve: (i) to obtain a reliable 
curve requires high precision time-consuming processes, e.g. galvanostatic intermittent 
titration technique (GITT) or quasi-static tests in controlled laboratory conditions (such as 
charging/discharging with an extremely small rate as C/25). This type of quasi-static tests 
cannot be conducted during normal use of battery. When one suspects the curve could 
have been altered, new lab data verification and calibration are required to update the 
calculation routine. (ii) The curve is indispensable. In the Ah-counting method, the need 
of this curve is straightforward: the initial SOC is out of reach by the integration process 
and can only be determined by tests and proper calibration. Although in Section 3.1 we 
also indicated that in addition to OCV other variables such as the impedance and the 
surface stress can also be used for calibration, the calibration using SOC = f–1(VOC) is the 
most accurate and reliable, widely used in the literature. For estimation methods with 
model-assisted regression process, the SOC = f–1(VOC) curve is a necessity when deducing 



the SOC from the estimated OCV value by the battery model.  
Here we summarize the conclusion in this section: SOC estimation method generally needs a 
known SOC = f–1(VOC) curve. Such an OCV-SOC relationship is supposed independent from 
the battery size, geometry, or shape; since it is supposed to be defined by thermodynamics if 
determined properly. However, through aging, such a relationship could vary, as influenced 
by variations in the active material compositions or their crystal structure, morphological 
changes in the electrodes, or cell balance. Examples can be found in some literature reports 
(e.g. [30,31,50,51,102]). The challenge is such a variation in the SOC = f–1(VOC) curve is 
difficult to detect and update using data obtained in the operation. It can only be recalibrated 
in the lab and updated in the software of the control unit. The development of self-adaptive 
model remains premature (or, at least, not vigorously validated) currently in most cases. 

3.4.2 The necessity of Ah-counting in model-based SOC regression: the issue of a 
reversed problem 

In Section 3.2, we pointed out that the Ah-counting methods are frequently invoked in 
model-assisted SOC regressions. From the publication analysis mentioned earlier, almost all 
the 50 papers on model-assisted SOC regressions involved Ah-counting, except two [71,82]. 
Although the reason for not using Ah-counting was not explicitly explained in the two 
exceptions, their selections are surprisingly coincident. Theoretically speaking, a valid model 
should be able to determine SOC independently with a two-step regression (i.e. the first step 
is to estimate OCV mostly from the value of terminal voltage, and the second step is to 
calculate the SOC from the estimated OCV). So, why these regression models need to engage 
Ah-counting?  

Here, the general framework of battery modeling approach may offer some explanations. 
Regardless what kind of battery models (i.e. ECMs, electrochemical models, neural network-, 
genetic algorithm-, or other artificial intelligence-based models) presents, battery regression 
models basically describe the relationship between the inputs (e.g. battery voltage and current) 
and OCV (as the output for inferring SOC). In other words, although models differ by their 
components and mechanics that correlate the inputs and output, their basic functions are the 
same. For ECMs, the components are resistance, capacitance, Warburg element, etc. and the 
mechanics is the ECD and the Kirchhoff laws. For electrochemical models, those are partial 
differential equations depicting the conservation laws of active species transport and kinetic 
expressions of electrochemical reactions. Analogously, in neural network models, the number, 
content and weight of neurons and the network configuration are the essence. The need for 
Ah-counting is to have an anchor to provide a point of reference for these model frameworks 
to assure the precision. Here, we shall use a typical first-order ECM (Figure 2) as an example 
to illustrate the point: 

  



[Figure 2] 

In this figure, OCV has a pre-determined relationship with SOC. R1, R2 and C2 are circuit 
elements. V2 is the divided voltage on the R2C2. Vt is the terminal voltage. I is the current of 
the main loop and I2 the current on the C2 branch. 

The differential equation of the circuit is: 

𝑂𝐶𝑉 = 𝑉! − 𝑅!𝐼 − 𝑉!, (12) 

𝑉! = −
1

𝑅!𝐶!
𝑉! +

𝐼
𝐶!
. (12.1) 

Considering the concept of capacitance, 𝑉! also satisfies Eq. (13) and (13.1): 
𝑉! = 𝑄/𝐶!, (13) 

𝑄 = 𝐼!𝑑𝑡. 
(13.1) 

where Q is the capacity of 𝐶!, and it’s the integration of branch current 𝐼! over time. 
Prior to the analysis of the three items on the right-hand side of the OCV formula in Eq. (12), 
we should introduce the concept of “frequency range” or “response time constant” to describe 
the response characteristics of other variables in Eq. (12) and (12.1) when the circuit on the 
main loop is excited with high-frequency alternative current signals. Some additional 
denotations should be explained here: 

• High frequency parameters –– when the current on the main loop I is of high frequency, 
the branch current I2 and terminal voltage Vt are both of high frequency. 

• Low-frequency parameters –– A one-time integral of the high-frequency parameters 
generates parameters with low frequency, such as Q and V2, given by Eq. (13) and (13.1), 
and SOC, expressed in Eq. (1). Since SOC and OCV have an algebraic correlation 
denoted by a rather smooth curve, the OCV is also assumed low frequency. 

• Algebraic calculation rules between high and low frequency parameters –– the algebraic 
sum of high and low frequency parameters is of high frequency. Since the main loop I is 
of high frequency and the low-frequency V2 gives the current on the R2 branch low 
frequency), it explains why the branch current I2 is of high frequency. 

Thus, as deduced from Eq. (12), the three items on the right-hand side of OCV, Vt, R1I and V2, 
are of high, high and low frequency, respectively. Only when the difference between the 
former two items is of low frequency, the OCV result calculated by the formula in Eq. (12) 
would be of low frequency. Therefore, we can attain a low frequency SOC according to the 
above rules. 

Whether or not the difference between Vt and R1I is of low frequency depends on the value of 
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R1. When the identification process of R1 is assumed completely accurate, the high frequency 
part of the difference can be theoretically eliminated. But the deviation to this ideal situation 
often occurs in reality due to the reasons as follows: 

(1) The identification of R1 will inevitably have errors. This is because the identification 
accuracy is affected by various factors such as battery temperature and its fluctuations. In 
real working conditions, the temperature of the battery over the test process is neither 
identical temporally nor uniform spatially. Therefore, the identified R1 could only achieve 
accuracy in the sense of averaging over a certain period of time. 

(2) The high frequency parameters, I and Vt, could be slightly different in phase in actual 
measurements due to data acquisition system constraints, a phase difference in the 
magnitude of milliseconds could result in non-negligible high frequency difference 
between Vt and R1I. 

Therefore, deviating from theory, slight disturbance in real computation process could 
generate a high frequency estimated SOC (which is against its nature since SOC is the result 
of integral) when only using battery models in the regression. This problem explains the 
irreplaceable value of the Ah-counting, which filters the impact of high frequency current and 
provides the stability for SOC estimation. When Ah-counting and model-based regression are 
used in conjunction, as in the typical KF algorithm, the recursive structure ensures that the 
SOC prediction inherits certain stability from the Ah-counting process. 

Furthermore, we should point out that, under the high frequency current perturbation to the 
main loop, the process of predicting Vt from a known OCV could reach a much higher 
accuracy. It is because this process basically deals with an algebraic calculation between high 
frequency R1I and low frequency OCV, V2. Such a computation to yield a high frequency Vt 
could be easily achieved since the frequency of the result is not sensitive to calculation errors. 
Such a reverse calculation is the most commonly used in verifying the accuracy of the battery 
models. 

In summary, if taken the calculation in the above paragraph as a forward process due to its 
common usage in validating battery models, its reversed process, to obtain a low frequency 
result by subtracting one high-frequency input from another, could be quite risky and have a 
greater probability of getting a result with high frequency oscillations. This explains the 
observation in Section 3.4.2 regarding the strong engagement of Ah-counting in most of the 
model-assisted SOC regression methods. 

4 MODELS 

Models used in the regression process have different flavors. As an example, most of the 
neutral network and genetic algorithm models emphasize empirical correlations in the models 
that consider battery as a “black box.” In this section, we shall focus on physical models that 
emphasize the mechanics of battery behavior as regarded in “multi-physics-based models.” 
The overarching task here is how to construct such models that are sufficiently accurate to 
assist SOC estimation. 



4.1 Multi-physics models and coupling principles 

When composing multi-physics models, one has to keep in mind that although SOC is a 
metric of expressing the degree of capacity utilization, to depict this aspect with sufficient 
accuracy and precision the coupling of the electrical properties with other properties of the 
battery is needed. In principle, three physical properties (electrical, thermal and mechanical) 
of a battery need to be considered in such coupling mechanism in the model development. 

To provide a better perspective on how to address the coupled physical processes with proper 
degree of consideration, here we use the concept of “frequency range” or “response time 
constant” as one critical aspect in the coupling mechanics. Through analyzing the time 
constant of the (energy) transfer functions, expressed as the inputs and outputs of the battery 
system in Table 5, the mechanics of this coupling mechanism could be analyzed according to 
the frequency range of different physical properties. 

4.1.1 Response time constant of the electrical property 

The EIS technique is capable of pinpointing the time constant of the electrical property in a 
battery system. A result of an EIS measurement is exemplified in Figure 3 as expressed in a 
Nyquist plot. In the Nyquist plot, the characteristic of the response time of the electrical 
property of a battery, such as that in this example, covered a wide frequency range, from 1 
kHz ~1 MHz, a range corresponds to the impedance of electron flows in the circuit, to < 1 
mHz, which corresponds to the intercalation/de-intercalation of ions during DC discharging 
or charging processes that induces substantial SOC change.  

 [Figure 3] 



4.1.2 Response time constant of the thermal property 

The frequency range covered with regard to the thermal property is much narrower than that 
of electrical one, and this range usually lacks the high frequency region. To figure what range 
it covers, the following methods are introduced: 

4.1.2.1  A rule of thumb 
Thermal response time of a material is determined by the thermal conductivity of the material 
in the direction of the heat flux. Hence, the response time constant can be easily estimated by: 

𝜏!!!"#$% = 𝑅!!!"#$% ∙ 𝐶!!!"#$% =
𝐿
𝜅 ∙ 𝜌𝐶!𝐿, 

(14) 

where 𝜏!!!"#$% , 𝑅!!!"#$% , and 𝐶!!!!"#$  are the time constant, thermal resistance and 
thermal capacitance between the heat source and the measurement point, respectively. L is 
the distance between the two locations, 𝜅 the thermal conductivity, ρ the material density, 
and Cp the thermal capacitance of the material. 

4.1.2.2 Experimental method 
By placing embedded temperature sensors at different locations in a laminated cell, the 
thermal response time of the cell could be determined along the separation distances [103]. 
The procedure is to situate the battery in a step heating process and use the transfer function 
of the first-order inertia process to obtain the correlation between the temperatures measured 
in the environment and those inside the cell or on its surface. The experimental procedure and 
fitting process of such an experiment as an example is described in detail in Ref. [103]. 
Figure 4 exhibits the results of this example in which the thermal time constant of a cell 
subjected to a series of experiments with external heating was derived. Figure 4(a) and (b) 
show the time constants measured between the temperature transducer placed in the ambient 
environment and the one inside the cell or on the surface of the cell, which are on the order of 
400~650 s. The difference of the two yields the time constant for the heat conduction in the 
cell. The thermal time constant within the cell is on the order of 20~70 s. 
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This result is quite similar to the one calculated by Eq. (14), thus, 

𝜏!!!"#$% =
𝐿
𝜅 ∙ 𝜌𝐶!𝐿 =

3.6×10!! !

0.48 ×2300×1243 = 77 𝑠, 
(15) 

where the parameters of the cell geometry are listed in Table 6 and the thermal conductivity 
𝜅 and the thermal capacitance of the material Cp are both pre-determined by the optimization 
method developed in Ref. [104]. 

4.1.3 Response time constant of the mechanical property 

As Table 5 shows, the output of mechanical property is more complex; therefore, its response 
time may have to be defined in more diverse ways. When the stress of a clamped battery or 
the volume of a battery in a free state is considered, these mechanical properties as outputs of 
the battery can be evaluated within the duration of one single charging or discharging regime, 
and the time constant is on the scale of several minutes. However, when the change of these 
outputs is concerned, the temporal scale shall actually reflect a slow aging process. Under 
non-abusive aging conditions, this time constant could be in months or years. 

4.1.4 The principle of multi-physics coupling 

The layout of the time constant span of each phenomenon of the three physical properties in a 
battery on a temporal coordinate is sketched in Figure 5. When selecting a battery model for 
SOC estimation under the principle of multi-physics coupling, we only need to couple those 
properties that work in the same frequency range according to the working condition and 
those on higher frequencies. From this perspective, the coupling could be treated in the 
following three aspects as follows: 
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(1) When estimating the SOC fluctuations within a few seconds or less than one minute, it’s 

quite likely that the temperature, stress and volume of the battery remain rather constant 
within this short interval. Thus, an electrical model without coupling with thermal or 
mechanical properties shall serve the purpose. 

(2) When estimating the SOC changes for intervals from a couple of minutes to a few hours, 
thermal effects should be considered through a thermal-electrical coupling model. If the 
system’s volume changes and/or stress field variations are significant, the coupling should 
be extended to include mechanical properties. 
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(3) For studies on the cumulative changes of SOC in days or longer, such as self-discharge 
during storage or re-calibration of SOC estimation after a long time, the impact of battery 
aging should be fully considered in the battery model. Coupling of the three properties is 
a necessity to realize the precision of SOC estimation over a long period. 

Based on the coupling principles stated above, we should now discuss the best practice to 
satisfy the criteria. This issue touches the essence of parameterization in the electrical (ECM 
or electrochemical), thermal and mechanical model coupling. Prior work in this area has been 
limited and likely incomplete. For example, electrical and thermal model coupling has been 
reported [105], but the results are still far from sufficient to elucidate the interactions between 
any two of the three basic properties of coupling. Any attempt to explain every possible 
coupling is an enormous task, probably outside the scope of this article. The schematic in 
Figure 6 just illustrates part of the important aspects in this triangular relationship of 
coupling. 

 

 [Figure 6] 
 

The coupling between electrical and thermal properties are the most commonly-used in 
battery modeling to predict SOC. In Sections 4.2 and 4.3, we shall discuss critical aspects in 
these two properties: i.e. the degree of simplification in electrical and electrochemical models 
and the dimension reduction of the thermal models, respectively.  

4.2 Electrical model: mechanistic or equivalent? 

In dealing with electrical responses of batteries under polarization, electrical models can be 
categorized generically in two types: electrochemical models and ECMs, according to the 
degree of simplification of the reaction mechanism. The electrochemical models are a family 
of 1-D or quasi-2-D models originated from Newman and his co-workers [106,107]. 
Newman’s model is based on basic conservation laws, including mass transfer equations such 
as those depicted by Fick’s laws and electrochemical principles to express the temporal and 
spatial relationships among the Li ion concentration distribution, the potential at the 
solid/electrolyte interface and the current density cross the surface of the active materials. 
The parameters of electrochemical models are dynamic coefficients describing the 
electrochemical reaction or mass transfer behaviors. Several refinements and extensions 
based on the original Newman model have been progressed continuously in the last few 
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decades; for instance, 

• Incorporation of the element of electric double layer at the interface to enhance accuracy 
of depicting the dynamic response of voltage to current steps.  

• Denoting the edge effect of electrode plate by an extra surface-integral equation to allow 
two-dimensional simulations. 

• Incorporating side reactions to model battery aging behavior, such as Li deposition on the 
negative electrode, including the threshold and side reaction intensity [108–110]. 

In contrast, ECMs are more comprehensive, especially for those who are familiar with circuit 
theory. In ECMs, the electrical elements such as resistance (R), capacitance (C) and Warburg 
impedance (W) [99,111] are used in the model to describe the electrical behavior of a battery, 
where transfer functions are with current as the inputs and terminal voltage the output. 
Improvements of ECMs have grown through a number of stages over the past couple decades, 
resulting in a few better-known ones such as those under Rint, RC, Thevenin, Randle, PNGV, 
Warburg-included PNGV models. The objective among these variations remains the same: by 
placing R, C and W elements in different configurations, researchers aim to improve fidelity 
and precision of the model predictions according to the data they have in hand. It is difficult 
to tell if such distinctions truly reflect the physical reality of the electrochemical reactions 
involved in a proper temporal and/or spatial manner. For temporal resolutions, the goal is to 
seek understanding of possible physical processes incurred in the battery via the separation of 
time constants in the frequency scans, whereas for spatial resolutions it seeks identification of 
locations where these possible processes may occur. 

Accordingly, it is perceived that an electrochemical model is more complicated than an ECM 
since the complexity of parameterization involved in the former is much higher than the latter. 
Table 7 provides a brief summary of the distinctions between the two approaches in 
modeling. 

So far, to our knowledge, not a single paper has addressed all the parameterization issues in 
an electrochemical model with sufficient level of validation through design of experiments, 
let alone the uncertainty in accuracy. Therefore, it is fair to say that electrochemical models 
are useful in guiding semi-quantitative assessments of battery designs and their performance. 
Although attempts to use electrochemical models for power control-orientated functions have 
been pursued (e.g. in Ref. [112]), the practicality remains to be demonstrated. Nonetheless, 
such efforts may deliver merits and utilities that ECMs may not be able to offer, such as: 

• The inherent ability to predict battery performance in the framework of forward models 
and computer designs with a variety of dynamic ranges of geometric parameters and test 
conditions to guide battery design and development.  

• The ability of incorporating multi-reaction scenarios that include side reactions to address 
aging and degradation issues (e.g. in the study of lithium deposition [109].) 

On the contrary, ECMs are convenient to derive empirical results from evaluations and data 
analyses. The reduction in computation resources makes ECMs a preferred choice for many 
engineering practices, including SOC estimations and for mobile, online, or embedded 
applications. In addition, the ECMs are more likely to achieve higher precision in practices 
due to its inherent merits in simpler parameter identification. 



4.3 Thermal model: lumped or distributed? 

The dimension selection of battery thermal model in the literature is highly diverse, from 
mass-point, zero-dimensional ones to one-, two-, or three-dimensional. Table 8 summarizes 
the selection of dimensions in various approaches in the literature.  

The three-dimensional coordinates of batteries of three different structures in Table 8 are 
critical for the selection of the thermal model dimensionality, which should be based on the 
extent of unevenness in the temperature distributions (or thermal gradients) in a battery. In 
general, the stronger the non-uniformity in temperature distributions the battery exhibits in a 
scenario, the higher the need of increasing dimensionality in the thermal modeling. The 
following guidance might be useful in the model dimensional consideration: 

 (1) The larger the battery size, the more severe thermal non-uniformity the battery exhibits. 
It is common to assume a uniform temperature distribution to describe its overall thermal 
state of a battery. Such an assumption presents higher risks of losing fidelity and accuracy 
as the size of the battery increases. Thus, increasing dimensionality should be considered 
as the battery grows in size and complexity. At least, it is recommended to include the 
dimension of which the largest thermal gradient is expected such as the in-plane direction 
of a laminated cell [103] or the thickness of a thick prismatic cell. 

(2) If the scales of a battery in different dimensions are distinct, non-uniformity in thermal 
energy distributions could exist. High dimensional thermal models should be considered 
in this case. Such a scenario is often the case for laminated cells, since the dimensional 
variability is high in these cells. For instance, the thickness of these cells is generally a 
few millimeters, but the width and length of the electrode plane could be up to tens of 
centimeters. 

(3) Non-uniformity in thermal energy distributions is also frequently present in batteries with 
materials that have a strong dimensional dependence on thermal conductivity or electrode 
design. An example shown in Ref. [104] showed that for a laminated battery the thermal 
conductivity along the thickness could be 1/40 of that in the in-plane direction. It should 
be noted that, in this example, although the thermal conductivity in the thickness direction 
is much smaller, the temperature uniformity in this direction is still better than that of the 
in-plane direction. This is because the temperature uniformity is an integral product of a 
few attributes, including the dimensional anisotropy in thermal conductivity, the position 
of the heat source, the flux of heat dissipation in different directions, and the disparity of 
the dimensional scales. 

(4) For a battery system on a vehicle platform, the influences from the design and control of 
the thermal management system should make the thermal energy distribution even more 
complex. In this case, high-dimensional thermal models should be employed to reveal the 
temperature variations of cells at different locations, so adequate adjustments to the SOC 
algorithms could be placed in line with such variations. 

In high-dimensional thermal models, identification of the anisotropic thermal parameters of a 
battery is the main challenge to improve thermal model fidelity and accuracy. Taking 
laminated cells as examples, the difficulty of parameter identification may include the 
following aspects: 



• Due to the presence of electrolyte (mostly liquid) inside the battery, thermal parameters 
have to be measured in situ in order to reduce any discrepancies in model predictions. 
Methods performed on a stack of dry electrodes and separators often cannot achieve 
satisfactory precision [113–115]. 

• Typical laminated battery comprises of different materials on the through-plane direction, 
constituted by layers of electrodes and separators. To ease model computation, it requires 
an equivalent thermal conductivity in this direction. To measure this quantity, instrument 
error could be considerable [116,117,118]. 

• Thermal property of the Al-plastic film packaging for laminated pouch cells is different 
from the cell interior core, requiring to be considered separately. 

• Layers of electrodes and separators in stacked or wound configurations could generate 
additional heat resistance between layers (partly due to the variation in the strength of 
mechanical contact). This variation is difficult to estimate; implying that, without careful 
validation, using an apparent thermal conductivity based on the collective conductivity of 
individual materials along the through plane in the model calculation may not be accurate 
anymore. 

Conducting in situ identification of anisotropic thermal conductivities could be extremely 
challenging and it is beyond the scope of this article. However, the authors have explored a 
joint-optimization method based on the experimental thermal response of the battery during 
external heating, and the simulation results [104] seemed to suggest that satisfactory 
precision could be achieved for the determination of anisotropic thermal parameters of 
laminated cells. 

4.4 Model validation 

Validating models could be as challenging as establishing them. Most of the time, we are 
unable to perform validation correctly and sufficiently due to possible errors that undermine 
the validation. These errors could originate from various sources. In conducting experiments, 
the bias in collecting data from transducers, protocols, or procedures could introduce errors 
systematically, which are difficult to manage already inherently. Barriers in validation could 
also come from the lack of sufficient temporal or spatial resolutions, since validation is often 
carried out at a single location or at a specific interval, easily leading to biased result when 
the system exhibits non-uniformity issues. 

Temperature is the most commonly used variable to validate a thermal-electrical coupled 
model of batteries. Table 9 summarizes two approaches of measuring temperature and the 
potential error origins, as well as possible solutions in each approach.  

Even if the transducers used are accurate and the information from these transducers has been 
correctly adjusted and interpreted, the model validation may be still far from sufficient when 
temporal or spatial resolutions have not been fully investigated. Table 10 summarizes several 
solutions to alleviate the insufficiency of validation, both temporally and spatially. 



5 ACCURACY  

5.1 Demands on accuracy 

Since the 1970s, 3C products have initiated the large-scale use of AA-, 18650-size, and flat 
wound lithium-ion batteries. The remaining capacity of the battery in typical 3C products, 
such as Walkman’s, cell phones, and cameras, is displayed in real time on its user interface to 
alert the users when the battery may run out of power so they can timely replace or recharge 
the battery. Even though interruptions in the operation of these electronic products by the 
battery create inconvenience and nuisance, the scenario hardly causes emergency or safety 
concern to the users. Thus, the users and the product developers have tolerated inaccuracy in 
SOC estimations with patience. Since 2000s, emerging telecommunication and information 
technology business needs reliable power sources that can provide mobility and portability 
with battery-powered devices. Such a demand has shaped more stringent requirements for 
accurate SOC estimation, for the following reasons: 

(1) Demands in cost-effective high energy and high power operation have driven the change 
in the battery chemistry from primary to secondary and from nickel-metal hydride to 
lithium-ion. The lithium-ion battery designs are prone to draw concerns on safety and 
reliability due to their inability to tolerate abuses. For instance, lithium-ion batteries are 
sensitive to overcharge and overdischarge. Overestimated or underestimated SOC would 
easily lead to overcharge or overdischarge of the battery. Such abuses could result in 
irreversible capacity loss or even safety incidents [139]. 

(2) Demands in environmental-friendly renewable energy applications, such as in EVs or grid 
energy storage systems where much higher quantities and larger sizes of battery cells in 
the system are required, are penetrating the consumer market and replacing 3C products 
as a more dominant share of battery supply chain. This demand-and-supply situation has 
also changed the playing field of battery technology and its development in many aspects. 
For example, for the EV applications, reducing volume and weight for the battery system 
are all critical design criteria, which leave little safety margin for the battery system to 
withstand abuses or address reliability issues by the conventional practice of mitigating 
abuses by overdesign the tolerance in performance envelope. All battery-manufacturing 
processes now have to be precise and accurate to meet every design requirements. The 
stringent requirement may well include the SOC estimation, as inaccurate estimates can 
lead to a malfunctioning vehicle and fatal consequence. Furthermore, the uncertainty for 
the SOC estimation shall result in more conservative battery usage, lower utility and 
mobility as well. 

These demands drive the pursuit for more accurate SOC estimations in the research. In the 
literature reports, improvements on accuracy have been claimed from early 8%, 5%, to 2% or 
even 1% in recent years [19]. To ensure practicality and economy of the SOC estimation 
methods and provide a trustworthy guidance for developing usable applications, the 
following protocols on how to determine a reasonable accuracy are suggested:  

(1) For BEVs, the tolerance or requirement for SOC accuracy could be set at about 5%. The 
proposed protocol is based on the allowance of usable capacity. At the lower end of the 
capacity range, the convention used by the OEMs usually sets the cutoff at more than 10% 



SOC to account for the possible error of 5% inaccuracy, which leaves the users with the 
very last 5% capacity for finding emergency charging or other solutions. For a typical EV 
equipped with a 20 kWh pack, 5% capacity should allow additional 3~5 km of driving. 
To alleviate overcharging at the higher end of the capacity range, the manufacturers 
usually take a conservative stance, e.g. 0.1–0.2 V below the safety limit. The margin of 
0.1–0.2 V could enable the battery to accommodate additional 5% – 10% capacity, if 
necessary. In some cases, batteries could withstand 120% SOC overcharge without 
obvious capacity degradation [139]. If so, a battery may survive a 5% SOC 
underestimation, since an equivalent amount of overcharging might not lead to severe 
consequences. 

(2) For hybrid EVs, a typical demand for accuracy could be the same as 5%, but this protocol 
comes out of a different reason. This margin arises from the need of transient control in 
the vehicle powertrain. Considering the hybrid system comprising the battery and the 
internal combustion engine (ICE), the response time to power switch of the battery-motor 
system is several magnitudes shorter than that of ICE system [140] (say, ms vs. s). To 
handle such a disparity in the temporal domain to warrant a smooth and accurate output in 
the powertrain operation, a typical power control unit usually employs a conventional 
strategy that fixes the power output of the ICE at an appropriate level and adjusts the 
power output of the battery spontaneously. Here the maximum power capability of the 
battery is crucial since the matching power output of the ICE should be determined in 
advance accordingly, and the key parameters used in the determination of the battery 
power capability is strongly related to the SOC [140]. In general, at low SOCs, the DC 
resistance (DCR) of a battery increases noticeably [34] and the maximum power output 
rapidly reduces. Figure 7 shows an example in which a battery in a hybrid EV is supposed 
to operate in a power assist mode <4>. If the battery operates in the middle SOC range, 
say 40%~60%, a variation of 5% SOC could induce a <5% deviation in the battery power 
capability. As the SOC decreases, the battery power capability also decreases rapidly and 
becomes more sensitive to the errors in the SOC estimation. Since the power control of 
hybrid EVs generally requires an error <5%, the accuracy of the SOC estimation should 
be set as 5% if the DCR curve in Figure 7 is adopted. It should be noted that since the 
DCR curve is different for types of batteries and the SOC range in use on hybrid EVs 
could be different too, this 5% standard is subject to change.  

It is worth noting that the hybrid EVs are equipped with smaller batteries, typically about 1~2 
kWh, much smaller than those of BEVs typically in the range of 15~25 kWh. Under this 
circumstance, even at lower SOCs such as 20%, the power capability of BEV batteries often 
could meet the demands in the powertrain. Thus, no additional protocol is needed from the 
perspective of power control when deciding an appropriate level of SOC accuracy for BEVs. 

 

                                                
<4> Different from BEVs, hybrid EVs only use a narrow SOC range of its battery. The set point for 
the power assist mode is usually near the center of the SOC range and has a span of around 20%. This 
set point may drift as the battery ages. For plug-in hybrid EV (PHEV), the center point shall vary 
since this type of EV has a preceding pure battery drive mode before the powertrain goes hybrid. 
Generally, batteries of PHEV have a wider SOC operation range than HEV.  



 
 [Figure 7] 

 

In summary, 3C products and EVs have specific and unique requirements on SOC accuracy, 
and those for EVs are stricter. For EVs, pursuing the last 1% of SOC accuracy is not only 
exhausting and costly but also unnecessary at most scenarios. In general, a 5% of SOC 
accuracy could meet the demand of most existing types of battery-powered products. The real 
challenge is not the accuracy of e-SOC against the experimental data but t-SOC, so system 
engineers would not catch surprises that their supposedly precise and accurate e-SOC does 
not match up with reality (i.e. t-SOC). 

5.2 Going statistical 

It is important to recognize that many factors affect the accuracy of SOC estimation. Sound 
statistical practices are critical to yield the needed accuracy. The following factors could 
contribute to variability of data that are used in the derivation of models and methods for an 
accurate SOC estimation: 

5.2.1 Measurement noise 

The interference from experimental measurements exists in every step of SOC estimation. 
Taking KF method for example, such interference manifests in the state-space model when 
acquiring terminal voltage, OCV, current, and temperature, where uncertainties in readings 
from sensory transducers, recording devices, possible biases in the test protocols and 
procedures could be introduced into parameter identification for the battery model. Such 
interference also appears in the observation space where errors in the current and the time 
keeping of the Ah-counting, so measurement noise would generate an error bar on the 
estimated results. In other words, a confidence interval for each measurement would be 
carried over into precision and accuracy of the prediction. The error bars or confidence 
intervals are associated with the measurement noise matrix. 



5.2.2 Spatial non-uniformity inside large-format single cells 

Spatial non-uniformity exists in large-format single cells. For conventional size batteries, e.g. 
AA, 18650 and other small ones, the temperature inside and outside a single cell is often 
considered rather uniform. For example, a case study reported that the temperature variations 
among different locations on the surface of an 18650 cell should be no more than 2°C [141]. 
However, for large-format batteries with a capacity more than 10 Ah, the temperature could 
be significantly different. For example, a case study with a 25 Ah laminated cell discharged 
in an environment chamber with forced ventilation showed that the temperature variations 
among different locations on the surface could be as high as 8°C at a mild discharge rate such 
as 1.5C [103]. Even the cell has a thin structure only 7 mm thick, one point on the surface and 
another internal point just 3.5 mm below the surface could have a 2°C difference [103]. 

The spatial non-uniformity of temperature in a cell shall lead to a difficulty of describing the 
state of the cell using a single-point data. Since the key parameters of the battery model, such 
as resistance, current, or capacity, are all closely related to the temperature distributions, 
noticeable spatial non-uniformity may render a model not trustworthy under a uniform 
assumption. Possible solutions are suggested as follows: 

(1) Lumped approach: to use several temperature sensors placed at different locations of a 
large-format cell and derive a synthesized temperature based on the mean, median or a 
spatially weighted average as a representative temperature for the cell in the model. The 
lumped approach may reduce the error of a single-point temperature input, but it cannot 
completely compensate the impact of spatial non-uniformity on the accuracy of the model 
predictions. 

(2) High-fidelity model coupling approach: incorporate the temperature non-uniformity and 
its interdependent phenomena by coupling the thermal aspects into the electrical model. 
This coupled model should adopt the true geometry, not necessarily three-dimensional but 
at least dimensional dependence on the temperature gradients. In multi-physics models it 
is a mutual coupling, where the electrical (i.e. potential/voltage and current) and thermal 
variables (i.e. temperature) are interactively and reciprocally correlated. On one hand, the 
heat generation rate is a function of overpotential, as expressed in the model by Bernardi 
et al. [142], whereas the overpotential is predicted by the ECM or electrochemical model 
[105,107,143]. On the other, the resistance in the ECM, the diffusion and reaction 
coefficients in the electrochemical models are all temperature-dependent. The 
multi-physics models afford us a complete description of incorporating spatial 
non-uniformities in single cells and clarifying the interactions between the thermal and 
electrical aspects.  

However, to establish such three-dimensional multi-physics models with high fidelity is not 
easy in reality and the difficulties may root in all aspects of modeling issues, such as the 
coupling methods, the geometric construction and the accurate determination of electrical, 
electrochemical and thermal parameters. Introduction to these difficulties and the know-hows 
to construct an accurate model have been discussed in details in Section 4. 



5.2.3 Cell-to-cell variation 

Cell-to-cell variation is a great concern in addressing the accuracy issues of SOC estimation. 
To express cell-to-cell variation, the common practice is to reply on statistical analysis (by a 
standard deviation from rated capacity or resistance for a specific cell model). Utilizing 
quality control and inspection at the manufacturing site is helpful to yield quality cells. 
However, the reliability of such control and assessment is hardly discussed in the literature. A 
study by Dubarry et al. [144] shed some light on the origins and identifications of cell-to-cell 
variation. A worthy note from this study is that battery performance metrics are a complex 
composition of thermodynamic and kinetic effects, of which each factor has a probability 
distribution by itself. As such, the statistical analysis on the metrics and their confidence level 
distributions are not a reliable characterization, since the sub-level distributions of its 
constituents might change over manufacturing processes and periods of storage time. This 
underlying effect has a significant impact on the precision and accuracy of the SOC 
estimation, which is difficult to characterize, since it is time-, origin-, and 
environment-dependent (or, in a more general term, path-dependent).  

 

[Figure 8] 

 

Figure 8 is an example to illustrate the points. Figure 8(a) shows the distribution of the DC 
resistance (DCR) in a batch of 100 commercial cells [144]. This distribution may appear as a 
natural Gaussian one. However, DCR has profound impacts on charging process as exhibited 
in Figure 8(b), where the end-of-charge (EOC) trickle charge currents at the cutoff and the 
rest cell voltages (RCVs) over a long rest period that represent the final SOCs are shown to 
have a density map that does not retain the same DCR distribution among the same 100 cells. 
The subsequent discharge regimes at (c) C/2 and (d) C/5, respectively, show a more 

(a)	

(b)	

(c)	

(d)	



perplexing nature in the capacity distribution profiles, since they do not resemble each other, 
although the only difference is supposed to be just the discharge rate. This example illustrated 
a unique aspect of statistical analysis for battery performance: as we commonly believed that 
DCR has a strong influence on capacity, such an influence is not well validated as this 
example showed. It is arguably profound to realize that the capacity distribution of these cells 
does not follow a one-to-one correlation with DCR. In other words, the distributions of 
capacity and DCR bear no kin to each other, so any statistical correlation between capacity 
and DCR may not bear any meaningful relationship.  

5.2.4 Stacking cells in a battery pack 

Battery packs come with multiple-cell configurations and present additional challenges for 
SOC estimation. As these cells are connected in serial and/or parallel in the pack’s wiring 
topology, several issues arise with SOC determination. An immediate consequence is the cell 
balance in the presence of the pack’s wiring topology. The way a cell is connected in the pack 
with its neighboring cells shall create a unique causality in the cell’s reaction to polarization. 
The capacity released from the pack is a collective result of each individual cells, implying a 
composition of divergent SOCs among the cells. How can we describe such an assembly for a 
proper SOC estimation of the pack? The following understanding could be used to derive a 
proper approach to determine the SOC for the pack. 

1) Cells in series connections as in a string should have the same current passing through, 
thus releasing the same amount of charge. Due to cell-to-cell variation, the same amount 
of charge in each cell may not translate into an equivalent range of SOC variations 
engaged in the discharge, nor the same voltage drop in each cell.  

2) Cells or strings in parallel connections shall have the same voltage across the terminals, 
thus spontaneous internal balance shall occur if their initial potentials are not the same. 
Those with higher potentials shall charge the lower ones until all reach the same potential. 
Such balance could be affected by other factors that lead to cell-to-cell variation besides 
potential. For instance, the cell internal resistance could be slightly different from one to 
another, which affect the current distribution in the branches among the cells or strings in 
parallel. Thus, the redistribution of the capacity due to this internal balance shall make the 
SOC estimation difficult not only for individual cells and strings but also for the pack. 

3) Additional factors from the environment and harnessing infrastructure also contribute to 
the uncertainty of SOC estimation in the pack. For example, connectors of various shapes, 
sizes, and materials are used in the battery pack assembly. These bolts and nuts, welding 
in the structure, cables, and bus bars add to the resistance and impedance of the system. 
These connectors divert current, divide voltage, generate heat and dissipate energy, thus 
adding more unknowns to the SOC estimation by changing energy efficiency, diverting 
charge balance, and creating thermal gradients over non-uniformity. 

4) Non-uniform temperature distributions in a pack seem inevitable, since the rate of heat 
generation and dissipation are often location- and direction-dependent. To ease the burden 
of on-board thermal management in a battery pack, the macro temperature variation over 
the pack should be controlled within a range, which has been optimistically set as 2~5°C 
by some EV manufacturers. In practice, managing temperature variations could be more 



challenging than controlling the maximum temperature since it involves the balancing of 
heat at multiple locations rather than just enhancing the ventilation at the hot spots. The 
temperature variations inside the battery pack could trigger the redistribution of current, 
affecting the charge balance, thus SOC estimations of individual cells in the pack or the 
SOC of the entire assembly.   

5) The control strategy and function of battery management system (BMS) in a battery pack 
could also impose unintended consequential effects on the charge and discharge behavior 
of individual cells and the pack itself. Although the BMS should protect the battery pack 
from abuses that could result in severe adverse effects or accidents via monitoring and 
controlling the battery charge and discharge behavior, inappropriate control of the BMS, 
including inability to adapt for aging and degradation and improper balancing of cells in 
the pack, could also increase the uncertainty in the SOC estimations of individual cells 
and the pack. 

Even though these effects might continue to interfere the goal of establishing a reliable SOC 
estimation, once we have better understanding and appreciation of the intricate coupling of 
electrical, thermal, and mechanical interactions among different elements in a battery pack 
we shall continue to improve the ability to deriving precise and accurate SOCs for cells and 
packs from basic principles and through careful validation. More recent work [29,145,146] 
has pointed to this possibility with better technical understanding and strategy. An example is 
shown in Ref. [145] in which a battery pack with three cells in series is used for illustrating 
the method of determining SOC for the pack based on SOCs of the individual cells. Each of 
three cells suffered different degrees of capacity loss due to loss of lithium inventory (LLI), 
and such variations need to be taken care of in the derivation of proper correspondence of the 
SOC ranges used in the cells in the discharge regime in order to project the scenario for the 
pack. In this case, the SOC scale of each cell has to be translated into a coherent one in order 
to derive the one for the pack. Detail description of this scaling and calculation should be 
referenced to Ref. [145]. 

 A battery pack configured with multiple single cells is an assembly of cells in isolation 
and interaction. On one hand, all cells are physically separated by packaging, implying the 
SOC of each cell may not necessarily resemble to each other; on the other, the electrical and 
thermal interactions among them never fully stop: current is redistributed, heat flux flows and 
efficiency adjusted. These interactions all contribute to the uncertainty in the SOC estimation 
of individual cells and the battery pack.  
Finally in Section 5.2, it should be noted that, when discussing the error band of SOC 
estimation results, one should try to identify those error sources with deterministic features in 
advance, such as the effect of OCV hysteresis, to minimize the estimation error as much as 
possible and reduce any further work on error analysis. 

6 CONCLUSIONS 

It has been a long pursuit to achieve better SOC estimations of batteries over the past few 
decades, and a brief summary of the status of progress as presented in this work only tips off 
the first step to understand issues and challenges before we put a stake to the right directions. 
Here, as we indicated, a number of issues need further investigations to lay the foundation for 
a reliable SOC determination. A few key points are summarized here: 



(1) Can we get rid of Ah-counting if we had sufficiently accurate battery models to correlate 
measurable variables (such as terminal voltage and current) with OCV? By analyzing the 
frequency range of each variable in a typical battery ECM, it is found that the estimated 
SOC may exhibit the characteristics of high frequency oscillation due to the inaccuracy of 
reversed algebraic calculation across frequencies. Incorporating Ah-counting in the 
model-assisted regression could help the SOC estimation converging due to the inherited 
stability from the integral process 

 (2) Constructing high-fidelity multi-physics models to perform SOC estimations accurately 
with the following suggestions:  
a) Carefully taking into account the coupling among electrical, thermal and mechanical 

properties in the frequency range that is relevant to the working conditions. 

b) Selecting proper modeling tools that can produce the needed utility. In most cases, the 
ECMs might be more appropriate than the electrochemical models mainly because of 
the likelihood of better precision in practice due to inherently less difficulties in 
parameter identification. 

c) Considering higher-dimensions thermal model to accommodate uneven distributions 
of thermal gradients in the battery. At least, dimensionality along the largest thermal 
gradient should be considered. 

d) Validating the models should be carried out carefully to account for not only system 
errors from instrumentation and environment but also possible biases from protocols 
and sensor placement.  

(3) The uncertainties in the SOC estimation could be attributed to several sources, including 
the measurement noise, spatial non-uniformity in a large cell, cell-to-cell variation, and 
configurational interference among cells in a battery pack. Therefore, it is intricate to 
apply statistical analyses with careful dimensional and temporal validation to establish 
confidence intervals based on physical understanding of the battery system and its 
characteristics, not merely empirical. Instead of being deterministic, the SOC estimation 
should enforce statistical results. 

This article has gone beyond review to provide commentary aiming at helping stakeholders in 
this field making better decisions for their endeavors. We hope it will serve this purpose and 
help to advance the field.  
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FIGURE CAPTIONS 

Figure 1. A logic tree of SOC-related subjects discussed in this work. 
Figure 2. Schematic of a first-order ECM for illustration. 
Figure 3. A typical EIS of a lithium-ion cell in a Nyquist plot 
Figure 4. The thermal time constants of a laminated cell in an external heating experiment 

reported in Ref. [103]. 
Figure 5. Time constant span of electrical, thermal and mechanical properties in a cell. 
Figure 6. Important aspects in the coupling of electrical, thermal and mechanical properties. 
Figure 7. DC resistance (DCR) and specific power curve of a 22 Ah graphite–LiFePO4 

lithium-ion battery [34]. 
Figure 8. Distributions of (a) DCR, (b) end-of-charge (EOC) current and rest cell voltage 

(RCV), and capacity at (c) C/2 and (d) C/5 in a batch of 100 commercial cells 
[144]. 

TABLE CAPTIONS 

Table 1. Experimental results describing the characteristics of the hysteresis phenomenon. 
Table 2. Main mechanistic models related to the hysteresis phenomenon. 
Table 3. Approaches to use electrochemical impedance to calibrate empirical SOC. 
Table 4. Remaining issues of using mechanical stress to calibrate empirical SOC. 
Table 5. Three basic physical properties of a lithium-ion cell. 
Table 6. The geometry and the pre-determined thermal properties of the cell in Ref. [104]. 
Table 7. Comparison of the requirements in parameter identification in two types of models. 
Table 8. Dimension selection of thermal models for batteries of different structures. 
Table 9. Issues in thermal measurements and possible solutions. 
Table 10. Solutions to minimize validation insufficiency. 
	
	
	



Table 1.  

No. Characteristics Details 

1 Temporally stable Hysteretic voltage gap will not change with extra rest time and eventually diminish, which is 
the main basis for distinguishing hysteresis and equalization. 

2 Irrelevant to C-rate Hysteresis voltage gap is irrelevant to the C-rate of preceding charging or discharging. 

3 Enveloped by the primary 
hysteresis curve [37] 

The outline of the hysteresis voltage gap in the entire SOC range constitutes the primary 
hysteresis curve, and that in a portion of the SOC range forms a secondary curve. All the pieces 
of secondary curves are enveloped in the primary one. 

 

Table 2.  

No. Models Details 

1 Single-particle theory 
[44,46] 

Taking the phase transformation process of FePO4/LiFePO4 as an example, the front of phase 
transformation gradually advances in the radial direction of each single particle. Assuming that 
the phase transitions of different particles are very similar, studying the phase transformation 
process of a single particle could reveal the main information of battery phase transformation. 

2 Multi-particle domain 
theory [47-48] 

(Domino theory) 

Battery phase transformation process should be described as multi-particle domains as the 
object. In the lithium intercalation process, the two-phase interface advances in the multi-
particle domains with its front in a particular shape. Individual particles behind the interface are 
in lithium-rich state while particles expecting this interface front are lithium-depleted. In any 
single particle, its internal lithium-ion distribution is uniform. 

 



Table 3.  

No.	 Approach	 Approach	details	 Drawbacks	

1	 Frequency	scan	 Measure	the	impedance	over	a	wide	frequency	range	to	
recognize	each	impedance	elements,	and	then	use	one	
or	several	specific	elements	(resistance,	capacitance,	
time	constant,	etc.)	to	determine	SOC	

Presence	of	multiple	ECD	models	
could	impair	the	component	
recognition.	

2	 Single	frequency	 Correlate	the	amplitude	or	the	phase	angle	of	
impedance	at	single-frequency	with	SOC	

To	identify	which	frequency	is	
informative	with	respect	to	SOC	

 

Table 4.  

No.	 Emerging	issues	with	mechanical	stress	to	calibrate	SOC	

1	 Whereas	measuring	the	thickness	accounts	for	only	the	scalar	factor	of	the	normal	stress,	and	assuming	the	sum	of	the	shear	stress	is	
zero,	mechanical	stress	is	a	force	that	should	be	expressed	in	a	vector,	depending	on	the	force	field	distribution	in	the	electrode	matrix.	
For	example,	not	only	the	assumption	of	zero	sums	in	shear	stress	might	not	be	true	in	certain	electrode	designs	and	aspect	ratios,	but	
also	the	secondary	effect	of	shear	stress	on	the	neighboring	compositions	might	not	be	uniform	if	the	deformation	is	direction	
dependent.	

2	 Chemical,	electrical	and	thermal	balances	in	the	electrode	matrix	and	the	entire	chemical	system	in	the	cell	could	affect	stress-strain	field	
balance.	Such	balance	is	spatial	and	time	dependent.	During	the	cell	balance,	the	dynamic	behavior	of	the	surface	stress	as	a	function	of	
spatial	location	and	time	is	not	well	defined	in	the	transient	state.	This	could	introduce	significant	errors	in	the	initial	stage	of	balance	
during	stress	or	strain	measurements.	

3	 As	explained	above,	the	correlation	between	the	mechanical	stress	and	SOC	is	also	affected	by	the	external	conditions,	such	as	the	
temperature	distribution,	the	mechanical	property	of	the	plates	(e.g.	thickness,	strength,	toughness,	hardness	and	plasticity	of	the	



plates),	aspect	ratio,	etc.	

4	 Due	to	the	porous	nature	of	the	electrode	architecture	and	composite	nature	of	the	solid-liquid	matrix,	the	stress-strain	field	could	cause	
mass	flows	of	solid	and	liquid	redistributions	to	alleviate	the	force	balances	in	the	matrix.	Over	time,	accumulative	plastic	flow	may	lead	
to	shape	change,	as	a	result	of	mass	redistribution,	which	causes	permanent	or	semi-permanent	(e.g.	a	longer	time	lag	versus	
measurement	interval)	variations	in	the	thickness	and	roughness,	thus	poor	consistency	in	the	mechanical	stress	vs.	SOC	correlation.	

 

Table 5 

No.	 Property	 Input	 Output	 Model	 Model	parameter	

1	 Electrical	 Current	 Terminal	voltage	 ECM/Electrochemical	
model	

See	Table	8	for	detail	

2	 Thermal	 Ambient	
temperature	

Temperature	distribution	Note	3	 Thermal	balancing	model	
(heat	generation-

conductivity-dissipation)	

Heat	generation	rate,	heat	
conductivity	coefficient,	heat	

convection	coefficient	

3	 Mechanical	 Historical	
cycling	

conditions		

Volume	change	(free	state),	stress	
change	(clamped),	external	

characteristics	change:	capacity,	
resistance	or	impedance	

Aging	model	 Elastic	modulus,	side	reaction	
parameters	

Note 3: It supposes a scenario of heating the battery by external heat sources. Another possible scenario is, during the charging or 
discharging of battery, the input and output could switch to the C-rate and the temperature of battery respectively. In the latter 
situation, the heat source is internal and the heat is conducted and dissipated towards outside. External and internal heating 
are normally two reverse processes of the heat flux.  

 

  



Table 6. 

Symbol	 L	 k	 ρ	 Cp	

Meaning	 Half	the	thickness	of	the	
laminated	cell	

Thermal	conductivity	in	the	
through-plane	direction	 Battery	density	

Battery	
thermal	

capacitance	

Unit	 M	 	 	 	

Value	 3.6	×	10–3	 0.48	 2300	 1243	

 

Table 7 

No.	 Item	 Electrochemical	model	 ECM	

1	 Parameter	types	

Reaction	dynamics:	electro-conductibility,	ion	diffusion	coefficient,	exchange	
current	density	

Geometry:	particle	size,	separator	pore	fraction,	material	thickness,	electrolyte	
concentration,	material	constitutions	(%)	

Equilibrium	potential:	relation	between	OCV	and	ion	concentration	in	solid	
material	

Rohm,	RSEI,	Rct	

Cdl,	W,	SOC-OCV	curve	

ohm:	ohmic	

SEI:	the	SEI	film	

ct:	charge	transfer	

dl:	double	layer	

2	
Number	of	

parameters	in	the	
model	

~50	 ~10	

W
m K⋅ 3

kg
m

J
kg K⋅



 

Table 8 

Battery	
structure	 One	dimension	 Two	dimensions	 Three	dimensions	

Cylindrical	 Radius,	r	[114,115,119]	

Radius,	r	

Axis,	z	[121,122]	 Radius,	r	

Axis,	z	

Angel,	θ	Radius,	r	

Angel,	θ	[123]	

Prismatic	 Axis,	z	
Long	radius,	x	

Short	radius,	y	

Long	radius,	x	

Short	radius,	y	

Axis,	z	[126]	

Laminated	 Thickness	/	through-plane,	y	[120]	
Length,	x	

Height,	z	[124,125]	

Length,	x	

Thickness,	y	

Height,	z	[127-129]	

 

  

3	 Identification	
experiments	

Reaction	dynamics：potentiostatic	intermittent	titration	technique	(PITT),	
galvanostatic	intermittent	titration	technique	(GITT),	cyclic	voltammetry	(CV)	
and	electrochemical	impedance	spectroscopy	(EIS)	

Geometry:	provided	by	the	manufacturers	

Equilibrium	potential:	OCV-SOC	curve,	see	Section	2.1	for	detail	

CC	discharging	tests	under	
several	rates	



Table 9 

No.	 Sensor	type	 Error	origin	 Solution	

1	 Infrared	thermal	imaging	

A	non-flat	surface	or	surface	roughness	 Correction	according	to	the	angle	of	
incidence	

Surface	emissivity	 Surface	paint	

Environment	influence	 Tests	in	dark	box	

2	 Thermocouple	/	thermal	
resistance	

Non-firm	contact	 Heat	conductive	silicone	grease	

Response	time	 Compensation	to	the	phase	delay	

 

  



Table 10 

No.	 Type	 Insufficiency	 Solution	 Solution	examples	

1	 Temporal	 Single	load	profile	 Multiple	load	tests		 (1)	CC		

(2)	Pulse	

(3)	Sinusoidal	or	rectangular	waves	

(4)	Dynamic	

Typical	load	test	 Using	special	methods	to	summarize	one	typical	load	to	
approximate	real-road	condition.	Such	methods	are	like	
hierarchical	clustering,	fuzzy	logic,	etc.	

2	 Spatial	 Single	location	
measurement	

Multi-location	measurement	 Placing	thermocouple	matrix	on	the	battery	surface	[103]	

Bulk	measurement	 Using	DC	resistance	or	EIS	to	determine	a	bulk	temperature	

[130-132]	

Field	measurement	 Infrared	thermal	imaging	

Internal	measurement	 Using	internal	thermocouples	embedded	inside	cells	[103,133-
138]	
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